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Abstract

There is an increasing interest in complementing conventional
histopathologic evaluation with molecular tools that could
increase the sensitivity and specificity of cancer staging for
diagnostic and prognostic purposes. This study strove to
identify cancer-specific markers for the molecular detection
of a broad range of cancer types. We used 373 archival samples
inclusive of normal tissues of various lineages and benign or
malignant tumors (predominantly colon, melanoma, ovarian,
and esophageal cancers). All samples were processed identi-
cally and cohybridized with an identical reference RNA source
to a custom-made cDNA array platform. The database was split
into training (n = 201) and comparable prediction (n = 172)
sets. Leave-one-out cross-validation and gene pairing analysis
identified putative cancer biomarkers overexpressed by malig-
nant lesions independent of tissue of derivation. In particular,
seven gene pairs were identified with high predictive power
(87%) in segregating malignant from benign lesions. Receiver
operator characteristic curves based on the same genes could
segregate malignant from benign tissues with 94% accuracy.
The relevance of this study rests on the identification of a
restricted number of biomarkers ubiquitously expressed by
cancers of distinct histology. This has not been done before.
These biomarkers could be used broadly to increase the
sensitivity and accuracy of cancer staging and early detection
of locoregional or systemic recurrence. Their selective expres-
sion by cancerous compared with paired normal tissues
suggests an association with the oncogenic process resulting
in stable expression during disease progression when the
presently used differentiation markers are unreliable. (Cancer
Res 2006; 66(6): 2953-61)

Introduction

There is an obvious interest in identifying diagnostic tools
that could complement standard histopathologic evaluation to
determine the presence of cancer cells in tissues (1). In particular,
a pressing need exists for biomarkers useful for early cancer
detection, accurate pretreatment staging, prediction of response

to treatment, and monitoring of disease progression. Transcrip-
tional profiling adds a novel dimension to cancer diagnostics
identifying molecular markers capable of differentiating tumors
beyond the discriminatory power of histopathologic evaluation
(2). This approach not only has improved the taxonomic
definition of individual cancers but also has generated novel
molecular identities that could be used in association with
morphologic inspection to assess the presence of cancer cells in a
given tissue. A molecular approach to cancer detection is
particularly useful when a few cancer cells reside in lymph nodes
draining a primary site or circulate in the blood as harbingers of
an impending recurrence. In those cases, although it may be
difficult to identify individual cells, it may be possible to uncover
the footprints of cancer through gene-specific or genome-wide
amplification (3).
Most studies, however, have restricted the analysis to

individual tumor types (1). This approach has limited the
usefulness of the identified biomarkers for two reasons: (a) the
biomarkers may not be broadly used as standard molecular
pathology tools and (b) genes whose expression is irrelevant to
the oncogenic process may be included. This makes current
biomarkers less useful for accurate pretreatment staging,
monitoring of cancer recurrence after primary treatment, and
long-term follow-up of cancer patients because their expression is
irrelevant to local spread, metastatization, and uncontrolled
growth. Indeed, several of the currently used cancer biomarkers
stem as differentiation markers from the tissue from which
specific cancers originate, such as tyrosinase in melanoma (4),
prostate-specific antigen in prostate cancer (5, 6), carcinoem-
bryonic antigen in epithelial malignancies (7), and CA-125 in
ovarian cancer (8). Quantitative assessment of the expression of
these markers may help in the identification of cancer cells;
however, their usefulness is limited by the propensity of tumor
cells to progressively lose their expression (1, 9). We recently
observed that the majority of genes that transcriptionally define
neoplasia depend on the ontogeny of individual cancers, whereas
universal oncogenic processes affect only the minority (9, 10).
Therefore, like well-defined tissue differentiation markers, the
expression of most genes defining a cancer histotype is likely
extinguished during the natural progression of the disease (9).
The identification of cancer biomarkers related to the oncogenic

process and therefore ubiquitously expressed by most malignancies
could increase the sensitivity and specificity of conventional
histopathologic evaluation by targeting genes whose expression is
critical for invasion, metastatization, and cell survival. Transcrip-
tional profiling of the NCI-60 cancer cell lines and a limited number
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of tissue specimens showed that multiclass cancer classification
may lead to the identification of biomarkers expressed by different
cancer types (11). Thus, the current study was aimed at the
identification of common genetic traits associated with aggres-
siveness, uncontrolled proliferation, and metastatic potential,
which could, in turn, be exploited as ubiquitous identifiers of
malignancy. Therefore, we searched for genes overexpressed by
cancer tissues in 373 archival cDNA microarray samples encom-
passing a variety of malignant and benign samples. All samples
were prepared and processed identically and cohybridized
consistently with a differentially labeled reference onto a 17.5K
custom-made cDNA array. Novel candidate biomarkers were
identified that could define malignancy with high levels of
accuracy. We also tested the predictive accuracy of a list of cancer
biomarkers proposed by the literature (Supplementary Data 1) and
identified 332 genes included as cDNA clones in the same 17.5K
array platform.

Materials and Methods

Tissue Procurement
Archival samples encompassing different tissue types (Table 1)

included paired normal kidney and primary renal cell carcinoma

specimens (Department of Urology, Johannes Gutenberg-University,

Mainz, Germany; ref. 9); excisional biopsies of melanoma lesions

(Department of Surgical Sciences, University of Padua, Padua, Italy) or

fine-needle aspirates of cutaneous melanoma metastases [Surgery Branch,

National Cancer Institute (NCI), NIH, Bethesda, MD; ref. 10]; primary

uterine and ovarian cancers, benign ovarian lesions, and peritoneal tissues

(Department of Gynecologic Oncology, M. D. Anderson Cancer Center, TX;

ref. 12); primary sarcomas, one primary endometrial cancer, one primary

laryngeal cancer, two primary breast cancers, and one primary colon

adenocarcinoma (Tissue Network, Philadelphia, PA); primary carcinomas

from the esophageal junction and paired normal esophageal tissue

surrounding the tumor (Biometric Research Branch, Division of Cancer

Treatment and Diagnosis, Cancer Prevention Studies Branch, National

Cancer Institute, National Institutes of Health, Bethesda, MD; ref. 2);

Table 1. Summary of samples used in this study

Training set n Prediction set n

Malignant tissues

Primary colon cancer 20 Primary colon cancer 16

Metastatic lymph nodes in patients with colon cancer 9 Metastatic lymph nodes in patients with colon cancer 9

Cutaneous melanoma metastases 8 Cutaneous melanoma metastases 3
Melanoma lymph node metastases 16 Melanoma lymph node metastases 17

In-transit metastases 2 In-transit metastases 1

Distant melanoma metastases 11 Distant melanoma metastases 10

Esophageal cancer 7 Esophageal cancer 5
Renal cell carcinoma 7 Renal cell carcinoma 7

Malignant ovarian tumor 12 Malignant ovarian tumor 14

Uterine cancer 1 Liver metastasis from colon carcinoma 1
Sarcoma 2 Sarcoma 1

Breast cancer 1 Breast cancer 1

Malignant laryngeal carcinoma 1

Testicular cancer 1
Total malignant lesions 98 85

Benign tissues

Peritoneum in patient with benign ovarian pathology 6 Peritoneum in patient with benign ovarian pathology 4

Peritoneal stroma in patient with benign ovarian pathology 4 Peritoneal stroma in patient with benign ovarian pathology 4
Normal peritoneum in patients with ovarian cancer 8 Normal peritoneum in patients with ovarian cancer 6

Normal peritoneal stroma in patients with ovarian cancer 8 Normal peritoneal stroma in patients with ovarian cancer 6

Normal ovarian tissue in patient with ovarian cancer 2 Normal ovarian tissue in patient with ovarian cancer 1
Normal peritoneum in patients with uterine cancer 2 Normal peritoneum in patients with uterine cancer 1

Normal peritoneal stroma in patients with uterine cancer 2 Normal peritoneal stroma in patients with uterine cancer 3

Normal colon tissue 4 Normal colon tissue 1

Normal and hyperplastic lymph nodes in patients
with colon cancer

28 Normal and hyperplastic lymph nodes in patients with
colon cancer

28

Hyperplastic lymph node in normal individual 1

Normal esophagus adjacent to cancer 6 Normal esophagus adjacent to cancer 6

Normal kidney 8 Normal kidney 7
Peripheral blood mononuclear cells 24 Peripheral blood mononuclear cells 22

Total benign lesions 103 87

Total no. lesions used for the analysis 201 172

Basal cell carcinomas 17 16
Duplicate samples 19 12

Total no. lesions included in the study 237 200

NOTE: Basal cell carcinomas and duplicate samples from the same patients were not included in any of the analyses done but were added for display in

the figures.
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primary colorectal carcinomas, lymph node metastases, one hepatic

metastasis, and normal or hyperplastic cancer draining lymph nodes from

patient with colorectal adenocarcinoma (Department of Pathology,
University of Pisa, Pisa, Italy); and basal cell carcinomas (National Naval

Hospital, Bethesda, MD). Specimens were collected as a result of routine

operative procedures, and portions were frozen for subsequent analysis,

whereas the remnant tissue was used for pathologic confirmation. Tissue
procurement followed standard ethical procedure according to the

institutional policy.

RNA Preparation, Amplification, and Labeling
Samples were snap frozen in the presence of RNAlater at �80jC (3).

Benign samples from cancer patient were histologically evaluated for

possible contamination of tumor cells. Samples with confirmed contami-

nation were excluded.

Total RNA was extracted from frozen material using Mini or Midi kit

(Qiagen, Valencia, CA) after homogenizing tissue in the presence of RLT

buffer with fresh addition of 2-h-mercaptoethanol and amplified into

antisense RNA (13). Although the quantity of total RNA was sufficient in

most cases for gene profiling, we have shown repeatedly the high-fidelity

RNA amplification yielding superior results due to lack of contaminant

rRNA and tRNA (3, 13–15). Quality and quantity of total and amplified RNA

were monitored using a Bioanalyzer 2000 (Agilent Technologies, Palo Alto,

CA; ref. 14). Poor-quality samples were excluded. Amplified RNA from

peripheral blood mononuclear cells pooled from six normal donors served

as a constant reference in all experiments (3). Test and reference RNA were

labeled with Cy5 (red) and Cy3 (green), respectively, and cohybridized to a

custom-made 17.5K cDNA microarray printed at the Immunogenetics

Section, Department of Transfusion Medicine, Warren G. Magnuson

Clinical Center, Center for Cancer Research, National Cancer Institute,

NIH, with a configuration of 32_24_23, and contained 17,500 elements.

Clones used for printing included a combination of the Research Genetics

RG_HsKG_031901 8K clone set, and 9,000 clones were selected from the

RG_Hs_seq_ver_070700 40K clone set. The 17,500 spots included 12,072

uniquely named genes, 875 duplicated genes, and f4,000 expression

sequence tags (complete gene list and printing layout are available at http://

nciarray.nci.nih.gov/gal_files/index.shtml). Array quality was first validated

using an internal reference concordance system based on the expectation

that results obtained through the hybridization of the same test and

reference material in different experiments should perfectly collimate. The

level of concordance was measured by rehybridizing periodically the same

arbitrarily selected test sample (A375 melanoma cell line) with the

consistent reference sample as described previously (16).

Statistical Analysis
Identification of candidate biomarkers. Archival cDNA array experi-

ments were retrieved from the NCI’s microarray database eliminating those
that based on image quality, background, and dye bias were considered of

lower quality. The remaining 502 arrays were collated into the Biometrics

Research Branch (BRB) array tool (http://linus.nci.nih.gov/BRB-ArrayTools.

html) and further evaluated for quality using M/A plots [M = log2(R/G),
A = log2

p
RG ; ref. (17)] before and after Lowess smoother normalization.

Sixty-nine arrays with skewed M/A plots were excluded from further

analysis. The remaining arrays included 33 basal cell carcinomas. These
were removed from the analysis because of the ambivalent behavior of

these tumors characterized by an indolent and noninvasive conduct in

between malignant and benign lesions (18). Finally, only one of paired

bilateral normal samples collected from the same patient (12) was used for
analysis excluding additional 27 samples. Both basal cell carcinomas and

paired normal samples were, however, returned to the data set for display in

the figures. In the end, a total of 373 samples were used for the analysis

(Table 1). These test samples were subdivided in a training set (201 arrays;
98 from malignant and 103 from benign tissues) and a prediction/validation

set (172 arrays; 85 from malignant and 87 from benign samples). Class

prediction comparing benign and malignant phenotypes was applied to the
resulting data set using different prediction methods [compound covariant

predictor, diagonal linear discriminant analysis, k-nearest neighbors for

k = 1 and 3, nearest centroid, and support vector machine (SVM)]

supported by the BRB array tool. Most of the information reported in this
article was derived using SVM and nearest-neighbor algorithms (Table 2)

that, as observed by others (19–21), outdone other approaches when

applied to transcriptional profiling. Gene pair identification was based on

the Greedy pairs approach (22), which starts ranking all genes based on
their individual t scores on the training set. The procedure selects the best-

ranked gene g i and finds the other gene g j that together with g i provides the

best discrimination using as a measure the distance between centroids of
the two classes with regard to the two genes when projected to the diagonal

linear discriminant axis. The two selected genes are removed from the gene

set, and the procedure is repeated on the remaining set until the specified

number of genes has been selected.
Class comparison was conducted using S plus program. Prediction

analysis was based on leave-one-out cross-validation (LOOCV). Receiver

Table 2. Summary of salient statistical analyses

Cutoff P No. genes SVM 3-Nearest neighbor 1-Nearest neighbor

Training (%) Prediction (%) Training (%) Prediction (%) Training (%) Prediction (%)

Analysis based on 6,175 cDNA clones up-regulated in malignant compared with benign lesions

<1 � 10�3 1516 90 ND 85 ND 89 ND

<1 � 10�7 395 91 ND 86 ND 86 ND

<1 � 10�13 50 88 ND 85 ND 88 ND
<1.7 � 10�16 20 90 85.5 88 86.6 82 89

<1 � 10�6 14 (7 pairs) 87 87 83 85 85 87

Analysis based on previously described biomarkers
<1 � 10�6 50 83 88 88 90 90 88

<5.4 � 10�5 14 (7 pairs) 86 85 85 85 87 82

NOTE: List of genes identified applying arbitrary cutoffs of significance to differentiate benign from malignant lesions. A class prediction program was

run applying incremental cutoffs of significance (P < 1 � 10�3, P < 1 � 10�7, P < 2.8 � 10�13, and P < 1.7 � 10�16) on 6,264 genes up-regulated in
malignant compared with benign lesions. In addition, gene pairing was applied on the same data set eliminating genes below a significance cutoff level

of <1 � 10�6. A similar analysis was applied to a restricted number of genes (332) that had been proposed previously as possible biomarkers

(Supplementary Data 1). Salient results resulting from different statistical strategies are shown.

Abbreviation: ND, not determined.
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operator characteristic (ROC) curves (23) were constructed by computing
the sensitivity and specificity of various sets of biomarkers as discussed in

Results. Principal component analysis (PCA) was applied using the Pro

software program (Partek, Inc., St. Charles, MO). All Ps are based on a two-

tailed unpaired Student’s t test. A Fisher’s exact test was used to assess the
significance of the classification. Data are displayed in the figures according

to the central method of normalization (24).

Results

Data from the arrays were filtered according to standard
procedure to exclude flagged spots, spots with diameter <25 Am
or intensity <200 after background subtraction. The filtered data
were normalized using Lowess smoother normalization. Genes
with <10% data V1.5-fold change in either the positive or the

Table 3. Proposed biomarkers for melanoma, colon, ovarian, and esophageal carcinoma

Clone ID UG No. Gene Name First 50 First 20 Seven pairs Refs.

781019 Hs.530077 PON2 Paraoxonase 2 Yes Yes Yes

781019 HS.530077 PON2 Paraoxonase 2 Yes Yes

769921 Hs.93002 UBE2C Ubiquitin Cong Enz E2C Yes Yes Yes (44, 53)
146882 Hs.93002 UBE2C Ubiquitin Cong Enz E2C Yes Yes

810928 Hs.153357 PLOD3 Procol-lys 1,2 oxoglute 5-dioxyg 3 Yes Yes Yes

813830 Hs.289271 CYC1 Cytochrome c-1 Yes Yes Yes

1613496 Hs.505172 EST Unnamed Yes Yes Yes
460646 Hs.481720 MYO10 Myosin X Yes Yes Yes

626544 Hs.481720 MYO10 Myosin X Yes Yes Yes

626544 Hs.481720 MYO10 Myosin X Yes Yes
788205 Hs.357901 SOX4 Sex determining region Y-box 4 Yes Yes Yes

2578078 Hs.433615 TUBB2 Tubulin-h2 Yes Yes Yes

430297 Hs.434059 ETV4 EST translocation variant 4 Yes Yes Yes

898253 Hs.79088 RCN2 Reticulocalbin Yes Yes Yes
1160531 Hs.118681 ERBB3 V-erbB2 Yes Yes (37, 38)

897570 Hs.30345 TRAP1 Tumor necrosis factor receptor–associated protein 1 Yes Yes (50)

788832 Hs.515258 GDF15 Growth differentiation factor 15 Yes Yes (42)

2511265 Hs.497636 LAMB3 Laminin-h3 Yes Yes (52)
755975 Hs.76111 DAG1 Dystroglycan 1 Yes Yes (51)

2557762 Hs.458332 PYCR1 Pyrroline-5-carboxylate reductase 1 Yes Yes

2466685 Hs.471156 ABI2 Abl interactor 2 Yes Yes (34)
2565981 Hs.407995 MIF Macrophage migration inhibitory factor Yes (41, 55)

487442 Hs.129826 NET-5 Tetraspanin 9 Yes (49)

878578 Hs.513490 ALDOA Aldolase A Yes (45)

2578793 Hs.513490 ALDOA Aldolase A Yes (45)
897781 Hs.533782 KRT8 Keratin 8 Yes (40)

824068 Hs.401903 COX5A Cytochrome c oxidase Va Yes

824068 Hs.401903 COX5A Cytochrome c oxidase Va Yes

2563366 Hs.518774 PAICS Phosphoribosylaminoimidazole carboxylase Yes
139291 Hs.23616 FLJ16517 Unnamed Yes

2549991 Hs.463456 NME2 Nonmetastatic cells protein 2 Yes (47)

755239 Hs.463456 NME2 Nonmetastatic cells protein 2 Yes (47)

2466969 Hs.475963 CTDSPL CTD small phosphatase-like Yes
742595 Hs.166071 CDK5 Cell division protein kinase 5 Yes (43)

592802 Hs.527061 RGS12 Regulator of G protein signaling 12 Yes (36)

755581 Hs.301613 JTV1 Unnamed Yes
840364 Hs.388004 AHCY S-adenosylhomocysteine hydrolase Yes

290337 Hs.287412 SVH Unnamed Yes

591864 Hs.1802 HLADOB HLA class II DOh Yes

2568090 Hs.512973 HSPC121 Butyrate-induced transcript 1 Yes
773170 Hs.82128 TPBG Trophoblast glycoprotein Yes

42096 Hs.491494 CCT3 Chaperonin containing TCP1, subunit 3 Yes (35)

810989 Hs.9234 NIFIE14 Seven transmembrane domain protein Yes

771323 Hs.75093 PLOD1 Procol-lys 1,2 oxoglute 5-dioxyg 1 Yes
823930 Hs.124126 ARPC1A Actin-related protein 2/3 complex subunit 1A Yes

810452 Hs.517066 TOMM34 Translocase of outer mitochondrial membrane Yes

586742 Hs.524281 WBP11 WW domain binding protein 11 Yes
26021 Hs.463928 DLG4 Unnamed Yes

814595 Hs.446240 PRKCBP1 Protein kinase C binding protein 1 Yes (33)

739126 Hs.404119 TSTA3 Tissue-specific transplantation antigen P35B Yes

770858 HS. 374990 CD34 CD34 Yes (46)
342211 HS. 467634 OACT2 O-acyltransferase domain containing 2 Yes
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negative direction from the median value of the gene were
excluded. In addition, genes with >20% data missing were excluded,
trimming the final working set to 13,254 genes.
Scatter-plot analysis based on the average log ratio of

malignant over benign lesions identified 6,264 of 13,254 genes,
with a fold difference of >1 (defined as genes up-regulated in
cancer). Class prediction was done by applying a univariate
significance threshold (P < 1 � 10�3 and P < 1 � 10�7) to select
genes suitable for LOOCV. This analysis identified 1,516 and 395
(Supplementary Data 2) genes, respectively. LOOCV based on
these genes could segregate malignant from benign samples with
a maximum predictive accuracy of 90% and 91%, respectively,
under the SVM algorithm. The same set of genes showed lower
accuracy when nearest-neighbor analysis was applied (Table 2).
Individual gene expression patterns were visualized by Eisen’s
luster and Treeview (data not shown), showing that most genes
were not exclusively expressed by malignant or benign samples,
and significant overlap occurred.
To focus on the best predictors eliminating genes sporadically

coexpressed by benign and malignant lesions, we ranked the 395
genes in ascending order of statistical significance (Student’s t test;
P2 comparing malignant versus benign lesions) and selected the

first 50 (Tables 2 and 3). Eisen’s clustering showed a high selectivity
in the pattern of expression of these genes with specific
overexpression in most malignant lesions (Fig. 1A). LOOCV
based on either SVM algorithm or 1-nearest neighbor showed a
prediction accuracy of 88% when applied to the training set
(Table 2). The list of genes was further narrowed to minimize the
number of putative biomarkers by restricting the selection to
the first 20 cDNA clones (cutoff P < 1.7 � 10�16; Fig. 1B ; Tables 2
and 3) representing a total of 16 genes as some spots represented
duplicates of the same gene (3 MYO10 , 2 PON2 , and 2 UBE2C).
LOOCV based on the 20 cDNA clones showed a prediction
accuracy of 90% in the training set.
An independent analysis was done on the complete data set of

6,264 genes up-regulated in malignant lesions by incrementally
adding pairs of genes that best separated benign from malignant
lesions (Greedy pairs method; ref. 22). Examination of a graphical
visualization of different pairs and their corresponding accuracy
yielded a logistic curve, indicating that seven gene pairs (14 genes)
had prediction accuracy of 87% in the training set close to that of
the 50 genes selected according to significance level (Fig. 1C ; Tables
2 and 3). The discrimination power of the selected gene pairs was
highly significant when applied to the independent prediction set

Figure 1. A, supervised hierarchical
clustering based on 50 genes ranked
according to the lowest P2s comparing
benign and malignant tissue samples.
Training set database: 210 samples
used for the analysis plus 17 basal cell
carcinomas (yellow box ) and 19 duplicate
samples obtained from the same patients
that were excluded from the analysis but
were used for display (Table 1). Data are
according to the central method for display
using a normalization factor as suggested
by Ross et al. (24). Benign and malignant
samples are marked with red and
blue lines , respectively. B, 20 genes
differentially expressed between malignant
and benign lesions with the highest degree
of significance (P < 1.75 � 10�16).
Data as in (A ). C, a seven-pair gene
pairing class prediction test done on the
6,264 genes up-regulated in malignant
tissue. Data as in (A). D, 2 � 2 table
describing the 87% accuracy value
obtained by plotting the seven gene pairs
described in (B) in the training set (left )
and in the prediction set (right ) using SVM
algorithm, where B is benign and M is
malignant; accuracy in both case was 87%.
E, ROC curves done using the seven gene
pairs (left ) or a set of 50 genes with the
highest level of discrimination between
malignant and benign samples. % Values
represent the area below the curve
(accuracy; ref. 23).

Common Cancer Biomarkers

www.aacrjournals.org 2957 Cancer Res 2006; 66: (6). March 15, 2006



of 172 samples (Fisher’s exact test; P <0.0001; Fig. 1D). Twelve of the
14 genes identified by this independent analysis were included
among the 50 most significant genes, whereas 2 genes (CD34 and
OACT2) were not.
The predictive value of the finalist biomarkers was challenged on

an independent prediction set (n = 172; Table 1). This was done in a
stepwise fashion separating the prediction set into four independent
groups each including f45 arrays. Each prediction group data was
merged with the training set basing the prediction algorithm on the
latter. Either the 20 most significant genes or the 14 genes identified
via gene pairing (Table 2) were used to predict simultaneously the
phenotype in the four separate sets. The predictive accuracy of the 14
genes for each of the four subgroups was very consistent and when
combined resulted in an overall 87% maximum predictive accuracy
similar to the one obtained with the training set. Interestingly, the
20-gene data set did less accurately using the SVM algorithm with a
drop to 85% accuracy from the 90% observed in the training set.
Comparison of the cDNA clones and genes obtained with the

two different methods (highest stringency of significance and gene

pairing) showed that most of them overlapped with the exception
of AB12, CD34 , and OACT2 that were present in the list of the 14
genes identified by gene pairing and not in the 20 most significant
genes. Table 3 summarizes the various sets of genes and provides
references linking their expression to cancer invasion, progression,
and/or metastatization.
To further corroborate the accuracy of the biomarkers identified

with the training set and confirmed with the stepwise prediction
analysis, we applied direct class comparison to the combined data
set (n = 379) using the S plus program. The analysis was run at a
univariate cutoff P < 1 � 10�7 and a ratio of malignant over benign
change cutoff of >2. This analysis identified 168 genes of which 11
overlapped the 14 genes identified by gene pairing. The remaining 3
genes matched the significance criteria for cutoff (P < 1� 10�7) but
were excluded because they were slightly below the geometric mean
selected for the distinction between malignant and benign lesions.
2 � 2 Tables showed that in the majority of cases the limited

accuracy was due to false-negative choices by the statistical
programs, therefore decreasing overall sensitivity. This was

Figure 2. A, supervised hierarchical
clustering based on 50 genes ranked
according to the lowest Ps comparing
benign and malignant tissue samples.
These genes were selected from a basis
of 332 already proposed biomarker genes
that were included in our arrays
(Supplementary Data). Same training
set database and additional samples
described in Fig. 1A . Data are according
to the central method for display using
a normalization factor as suggested by
Ross et al. (24). Benign and malignant
samples are marked with red and blue
lines , respectively. B, a seven-pair gene
pairing class prediction test done on the
332 previously proposed biomarkers.
Data as in (A). C to E, PCA based on
the seven gene pairs (red circles,
benign; blue circles, malignant samples)
identified by analysis of the 6,264 genes
up-regulated in cancer (C ), seven gene
pairs identified by the analysis of 332
known biomarkers (D ), and using the
combination of the two gene pairing
results (E ).
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exemplified by the seven gene pair data set, in which false negatives
occurred 15% of the times, whereas false positives occurred 10% in
the training set (19% and 7% in the prediction set; Fig. 1D). It is of
note that the majority of false-positive predictions (benign lesions
predicted as malignant) occurred in samples from tissues (normal
esophagus, renal epithelium, and ovarian) proximal to cancer
interpreted at pathologic examination as free of cancer cell infilt-
ration. Yet, subliminal contamination might have gone undetected.
This hypothesis could not be confirmed, however, by this study
because the amount of histologic material was not sufficient for
further analysis. In addition, among the lesions that have been
labeled as benign, there was a primary carcinoma in situ that was
recognized as malignant by the analysis but on retrospect should
have been placed a priori among the malignant lesions or excluded
from the analysis.
The set of 14 genes was further validated using ROC curve

analysis (23). This method portrays the proportion of true positives
identified for any particular proportion of false positives and vice
versa providing a better and more precise measure of diagnostic
accuracy, because it is uninfluenced by decision biases and prior
probabilities placing the performances of diverse systems on a
common scale. Indeed, when ROC curves were calculated for the 14
biomarkers (Fig. 1B), they yielded a 93.6% accuracy underlying the
superiority of this method in defining decision criteria (Fig. 1E).
This level of accuracy was almost identical to that of the 50 most
significant biomarkers (94.3%).
An extensive review of the literature and/or commercially

promoted cancer biomarkers identified 332 genes present in our
array platform (Supplementary Data 1). The predictive value of
these genes was tested on the prediction set setting a univariate
threshold P < 0.0001. LOOCV identified 56 genes among the 332 with
significance under the set threshold. The genes were then clustered
using Eisen’s cluster and visualized using Treeview (Fig. 2A). This
analysis included genes that were either up-regulated or down-
regulated in malignant compared with benign lesions. Class
prediction based on these genes showed a maximum 88% accuracy
in correctly segregating benign andmalignant samples. Gene pairing
analysis done on the 332 genes identified seven gene pairs with a
maximum predictive accuracy of 85% (Fig. 2B). Among them, only
three genes (CYC1, CD34 , and ERBB3) had also been identified by the
previous analyses (Table 2). Thus, the present study identified novel
ubiquitous cancer biomarkers with a prediction performance at
least as good as that of the best-known cancer biomarkers. PCA
showed that the best degree of separation between benign and
malignant lesions could be obtained with the seven gene pairs
derived analyzing the 6,264 genes overexpressed in cancer ( first
component score = 67.4% and second component score = 50.3%;
Fig. 2C). PCA based on the seven gene pairs identified by analyzing
the 332 known biomarkers also showed good visual separation of
benign from malignant lesions (Fig. 2D), but the calculated
discrimination was not as strong as with the first component score
(56.2%) and the second component score (33.9%). The combined
utilization of the 14 gene pairs did not significantly increase the
discriminatory power with the first component score (56.1%) and
second component score (40.1%; Fig. 2E).

Discussion

Global transcript analysis is a powerful taxonomic tool that can
identify clinically relevant molecular subclasses of cancer otherwise
not identifiable by standard pathologic examination (2). Although

this discrimination has enhanced our diagnostic acumen, the
identification of biomarkers whose expression is shared by most
cancers could serve the general purpose of segregating malignant
from benign conditions independently of individual taxonomies
(11). The identified universal biomarkers could be added to the
pathologist’s repertoire for the uncovering of cancer invasion when
comprehensive histologic evaluation is not sufficient. We have
observed previously that the genetic profile of individual cancer
histotypes is strongly biased toward its own ontogeny; the majority
of genes preferentially expressed by each histotype represent the
remnant of the cellular lineage of derivation (9, 10). Therefore, renal
cell cancers share the expression of a great number of genes with
normal renal epithelial cells (9) and melanomas with normal
melanocytes (10, 25, 26). This tissue differentiation markers are
useful when searching for ectopic cancer cells wandering in the
circulation or migrating to the draining lymph nodes where, for
instance, the melanoma-associated antigen tyrosinase should not
be found in normal conditions (27, 28). However, the use of tissue
differentiation markers for the detection of cancer is predicated on
their presence and for this reason has several limitations. First,
genes whose expression results from lineage differentiation have
generally specialized functions not associated with cell survival in
ectopic tissues. Therefore, as tumor cells migrate and dedifferen-
tiate, their expression progressively extinguishes (29, 30). Thus,
although the expression of tissue differentiation markers may be
indication of cancer cell infiltration of normal tissues, lack of
identification cannot exclude the presence of undifferentiated
tumor cells. Second, the expression of tissue-specific markers can
be affected by nonneoplastic conditions, such as demographic or
behavioral factors that may decrease their specificity (5, 6, 31, 32).
Finally, tissue-specific markers are normally limited to one or few
cancers and, therefore, cannot be used broadly.
We compared previously the gene expression profile of normal

renal epithelium with that of renal cell carcinoma tissue and
cancers of other histology (9). In this three-way comparison, we
recognized that a small proportion of genes were specifically
overexpressed by cancers independently of the lineage derivation.
We therefore extended the analysis to a larger array of tissues,
including normal peripheral blood mononuclear cells as a marker of
systemic infiltration of normal cells; normal hyperplastic lymph
nodes draining primary colon cancer areas, which closely relate to
the clinical staging of primary disease;9 cancer-free peritoneum
from patients with ovarian malignancy, which we have shown
previously to harbor cancer-related signatures of inflammation that,
however, are not related to the oncogenic process (12); and paired
normal and cancerous epithelia (renal epithelial cells, esophageal
mucosa, and normal ovary) adjacent to primary tumors judged on
extensive pathologic examination to be free of cancer cells (9, 10,
16). All these tissues have been treated identically, and individual
gene expression was internally controlled by a consistent reference
source. We have analyzed previously the robustness, reproducibility,
and concordance of this strategy comparing cDNA-based results
with those obtainable with other molecular testing techniques (16).
This analysis was focused specifically on genes overexpressed by

cancer tissues because these may be most useful when normal
tissues are scrutinized for the presence of few, difficult to detect
cancer cells. Different statistical approaches achieved rather
consistent results. Of the 50 cDNA clones representative of 45

9 K. Zavaglia et al., in preparation.
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genes most significantly up-regulated in cancer using the class
prediction BRB array tool, 27 were included among the 168 genes
identified by direct class comparison using S plus program,
whereas the remainder genes were excluded because they barely
did not match the empirically set statistical thresholds. As class
comparison included a variable descriptive of relative expression
levels (log2 ratio z 2 between malignant and benign tissues), the
simultaneous identification of a large proportion of genes by both
analyses supports not only the significance of the selection but also
a substantial level of over expression in cancer tissue.
Basal cell carcinomas display a biological behavior in normal

and malignant tissues with minimal local invasiveness and almost
no metastatic potential (18). For this reason, these lesions were
kept out of the analysis but were reintroduced in the figures to
provide an intermediate biological reference (Figs. 1A-C and 2A
and B). Visual inspection suggested that the expression pattern of
most biomarkers by basal cell cancers (yellow bar) was closer to
that of benign than malignant tissues, suggesting that most of the
genes identified by this study are associated with aggressive
behavior and metastatic potential; a conjecture also supported by
the literature (refs. 11, 33–53; Table 3).
Because the purpose of the analysis was to identify a minimal

number of biomarkers with the highest predictive value, we
focused our interest on the 14 cDNA clones identified by gene
pairing. These candidate biomarkers were validated further on the
completely independent prediction set with a consistent predictive

accuracy of 87%. This level of accuracy is better than the accuracy
of previously reported multiclass tumor classification biomarkers
identified through the analysis of cell lines (54) and challenged
against a limited number of tissue samples (11, 45, 55).
The uniqueness of the current study resides in the consistency of

the platformused, constant reference, strict standardization of sample
processing, and stringent quality selection criteria chosen to include
sample in the analysis (16). On the other hand, the usefulness of the
proposed biomarkers still depends on further validation. First, the
analysis compared proportional gene expression between benign and
malignant tissues rather than absolute copy numbers. Thus, it is not
known whether some of the genes are uniquely expressed by tumor
tissues or are expressed in benign conditions although at a lower level.
Second, several important tissues, particularly involving chronic or
acute inflammation, were not available to us. Although we attempted
to include asmany relevant normal tissues as possible, further work is
needed to validate the relevance of these markers in other
pathophysiologic conditions. Finally, this study was done only at the
transcriptional level. Thus, the proposed genes may serve, for now, as
useful molecular tools to complement histopathologic examination.
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